Studies in Lightweight Cryptography

نویسنده

  • Hadi Soleimany
چکیده

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Hadi Soleimany Name of the doctoral dissertation Studies in Lightweight Cryptography Publisher School of Science Unit Department of Information and Computer Science Series Aalto University publication series DOCTORAL DISSERTATIONS 211/2014 Field of research Theoretical Computer Science Manuscript submitted 26 September 2014 Date of the defence 30 January 2015 Permission to publish granted (date) 28 November 2014 Language English Monograph Article dissertation (summary + original articles) Abstract The decreasing size of devices is one of the most significant changes in telecommunication and information technologies. This change has been accompanied by a dramatic reduction in the cost of computing devices. The dawning era of ubiquitous computing has opened the door to extensive new applications. Ubiquitous computing has found its way into products thanks to the improvements in the underlying enabling technologies. Considerable developments in constraint devices such as RFID tags facilitate novel services and bring embedded computing devices to our everyday environments. The changes that lie ahead will eventually make pervasive computing devices an integral part of our world. The growing prevalence of pervasive computing devices has created a significant need for the consideration of security issues. However, security cannot be considered independently, but instead, should be evaluated alongside related issues such as performance and cost. In particular, there are several limitations facing the design of appropriate ciphers for extremely constrained environments. In response to this challenge, several lightweight ciphers have been designed during the last years. The purpose of this dissertation is to evaluate the security of the emerging lightweight block ciphers. This dissertation develops cryptanalytic methods for determining the exact security level of some inventive and unconventional lightweight block ciphers. The work studies zerocorrelation linear cryptanalysis by introducing the Matrix method to facilitate the finding of zero-correlation linear approximations. As applications, we perform zero-correlation cryptanalysis on the 22-round LBlock and TWINE. We also perform simulations on a small variant of LBlock and present the first experimental results to support the theoretical model of the multidimensional zero-correlation linear cryptanalysis method. In addition, we provide a new perspective on slide cryptanalysis and reflection cryptanalysis by extending previous research of self-similarity cryptanalysis. Unlike classical techniques, our approach is not limited to deterministic characteristics. To demonstrate the impact of our model we provide statistical and structural analysis of three well-known lightweight block ciphers: ITUbee, Zorro and LED. As a result of the analysis presented in this work new security criteria for PRINCElike ciphers are obtained.The decreasing size of devices is one of the most significant changes in telecommunication and information technologies. This change has been accompanied by a dramatic reduction in the cost of computing devices. The dawning era of ubiquitous computing has opened the door to extensive new applications. Ubiquitous computing has found its way into products thanks to the improvements in the underlying enabling technologies. Considerable developments in constraint devices such as RFID tags facilitate novel services and bring embedded computing devices to our everyday environments. The changes that lie ahead will eventually make pervasive computing devices an integral part of our world. The growing prevalence of pervasive computing devices has created a significant need for the consideration of security issues. However, security cannot be considered independently, but instead, should be evaluated alongside related issues such as performance and cost. In particular, there are several limitations facing the design of appropriate ciphers for extremely constrained environments. In response to this challenge, several lightweight ciphers have been designed during the last years. The purpose of this dissertation is to evaluate the security of the emerging lightweight block ciphers. This dissertation develops cryptanalytic methods for determining the exact security level of some inventive and unconventional lightweight block ciphers. The work studies zerocorrelation linear cryptanalysis by introducing the Matrix method to facilitate the finding of zero-correlation linear approximations. As applications, we perform zero-correlation cryptanalysis on the 22-round LBlock and TWINE. We also perform simulations on a small variant of LBlock and present the first experimental results to support the theoretical model of the multidimensional zero-correlation linear cryptanalysis method. In addition, we provide a new perspective on slide cryptanalysis and reflection cryptanalysis by extending previous research of self-similarity cryptanalysis. Unlike classical techniques, our approach is not limited to deterministic characteristics. To demonstrate the impact of our model we provide statistical and structural analysis of three well-known lightweight block ciphers: ITUbee, Zorro and LED. As a result of the analysis presented in this work new security criteria for PRINCElike ciphers are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Technology Dependence of Lightweight Hash Implementation Cost

The growing demand of security features in pervasive computing requires cryptographic implementations to meet tight cost constraints. Lightweight Cryptography is a generic term that captures new efforts in this area, covering lightweight cryptography proposals as well as lightweight implementation techniques. This paper demonstrates the influence of technology selection when comparing different...

متن کامل

The Design Space of Lightweight Cryptography

For constrained devices, standard cryptographic algorithms can be too big, too slow or too energy-consuming. The area of lightweight cryptography studies new algorithms to overcome these problems. In this paper, we will focus on symmetric-key encryption, authentication and hashing. Instead of providing a full overview of this area of research, we will highlight three interesting topics. Firstly...

متن کامل

State of the Art in Lightweight Symmetric Cryptography

Lightweight cryptography has been one of the “hot topics” in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a “lightweight” algorithm is usually designed to satisfy. We also present an extensive survey of all lightweig...

متن کامل

Lightweight Cryptography for the Internet of Things

This paper gives an overview of the state-of-the-art technology and standardization status of lightweight cryptography, which can be implemented efficiently in constrained devices. This technology enables secure and efficient communication between networked smart objects.

متن کامل

Evaluation of Lightweight Block Ciphers in Hardware Implementation: A Comprehensive Survey

The conventional cryptography solutions are ill-suited to strict memory, size and power limitations of resourceconstrained devices, so lightweight cryptography solutions have been specifically developed for this type of applications. In this domain of cryptography, the term lightweight never refers to inadequately low security, but rather to establishing the best balance to maintain sufficient ...

متن کامل

Lightweight Authentication Protocol for Low-Cost RFID Tags

Providing security in low-cost RFID tags is a challenging task because tags are highly resource constrained and cannot support strong cryptography. Special lightweight algorithms and protocols need to be designed that take into account the limitations of the tags. In this paper, we propose a set of extremely lightweight tag authentication protocols. We also provide an analysis of the proposed p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014